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The conservation laws of hydrodynamics in integral form, in the general case of internal 
flows with the usual assumptions for quasi-one-dimensional approximations, lead to an open 
system of equations. In different applications these equations are traditionally solved 
using additional and often contradictory hypotheses [1-4] or experimental data [5]. In [2, 
6], where the flow of an ideal gas in channels with steps is studied, it is noted that the 
pressure at a step in the channel is related with the jump in the entropy. Here, in order 
to close the equations of hydrodynamics, the hypothesis that the thermodynamic function is 
independent is proposed - the coefficient of restoration of the pressure Op is independent 
of the jump in the cross section of the channel. The dependence could be manifested 
only implicitly when dissipative effects, arising in the zones of mixing with different types 
of local perturbations of the flow, are taken into account. This hypothesis is based on a 
qualitative analysis of the first and second laws of thermodynamics, and in its turn permits 
constructing an additional equation that closes the system of equations of hydrodynamics. 

i. The laws of conservation of hydrodynamics are written down for a fixed volume V of 
part of the channel, within which the action on the liquid occurs and new hydrodynamic parame- 
ters of the flow are established (Fig. i). The quasi-one-dimensional treatment of the flow 
in the channel and in the side branches and under typical assumptions for such problems 
[7, 8] leads to the following system of equations for the average parameters: 
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of the flow; n is a normal vector; x~ = r~ @ P~, Pn = --p@nv}, q* = q @ Q, Q = 9(v'v'2>/2, 

and Xn, q are the friction stress vector and the heat flux vector; Pn and Q are the same for 
turbulent pulsations; the indices - and + indicate a state in the starting S- and output S + 
sections of the channel; k indicates the cross section of the k-th side branch; and, a de- 
notes parameters evaluated on the side surface of the channel. The equations (i~ were 
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written out under the assumption that the axes of the side channels lie in the symmetry 
planes of the channel and are orthogonal to its side surface. Relation of the type 

f T , S S =  ~ TndS @ ~_~ ,1%cIS hold for the friction forces and heat fluxes on the surface of 
o+r% e t h = l  otk 

the channel o and the side branches o k (~ is he surface of the screen tube of the flow of 
gas from the section S- into S +, Otk is the same for the flow crossing the section Sk). Some 
types of work performed in the volume V, for example, by turbulent stresses, are omitted in 
the energy euqation. In the solution presented here the latter are important only as a 
physical factor due to the presence of turbulent pulsations, already mentioned in the energy 
equation. The equations (i.i) are supplemented by the equation of state p = pRT (T is the tem- 
perature ). 
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(rhv j + r h ~ k ) ) ( n h  i s  a u n i t  v e c t o r  on  t h e  a x i s  o f  t h e  k - t h  s i d e  b r a n c h  a n d  r k i s  a u n i t  v e c t o r  
lying in the plane (n k, i) and is orthogonal to the axis of the channel) the projections of 
the equations of motion (i.i) on the transverse coordintes (see Fig. i) lead to 
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where A tk = -- ( f m,*~r~S + f ~.rdS @ ~ PnrdS~/(sSpv:)a determines the role of the 

transverse components of the friction acting on the k-th stream tube; ot k is the part of 
the surface of the stream tube o t adjacent to the stream tube Otk; (S-+ s+)kare the trans- 
verse cross sections of the stream tube Otk; in the sections S- or S +. 

In connection with the energy equation we note a difference in (i.i) for outflow from 
the channel and inflow into the channel. In the first case it can be transformed taking 
into account the energy equations for small streams crossing the section Sk: (sSpu~Oh//h+ 

q ~ d S + . f Q ~ d S = ( e S p v ~ O k H -  ; in the second case the enthalpy H k is an external (given) parame- 

weighing factor ~p for the average pressure Pc - %,P+ @ (I -- %)p-, 

(A~ =I, Ok=O 
channel), and eliminating the pressure Pk with the help of (1.2), Eqs. 
and the conditions 
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(1.4) 

0 + . ( i .5)  

The system (1.4) describes the reaction of gas to local finite disturbances: geometric 
AS, flow AGk, thermal AQ and 5Qk, and friction forces Ax and Axk. For given disturbances 
the system (1.4) must be studied independently of (1.2), and in the general case it is open 
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owing to the fact that Po (or ~p) is unknown. The equations (1.2) in which the external and 
internal (with respect to the volume of liquid singled out) parameters of state, together 
with the energy equations for stream tubes of the side branches and other external conditions, 
can be employed to determine some of the disturbances enumerated above. In particular, in 
problems in which mass is supplied to the channel (AGk > 0) it is usually assumed that Pk = 
Po [9]. Then (1.2) give fully determined values hTk -akn k, and (1.5) leads to. 

(1.6) 

Here Jkx is the projection of the momentum of the liquid mass, injected into the channel 
through the k-th opening in the direction of the flow in the channel. With (1.6) the system 
(1.4) is identical, under comparable conditions (A G > 0, IASI << i), to the equations of [9], 
and h~ is the effective coefficient of friction introduced in [i0]. 

Unlike the problems presented above, problems with removal of mass (hGk < O),.flhere 
Pk ~ Po, can be studied on the basis of the model of an ideal liquid (h~k = h~ = A~ = Qn = 0), 
which makes Eqs. (1.4) "insensitive" to the angle at which mass is removed from the channel. 

2. The solution of the system (1.4) relative to the parameters of the state after the 
disturbances gives a quadratic equation, in whose coefficients it is convenient to replace 
the ratio of the heat capacities 7 by an effective quantity n (under the additional restric- 

tions a + = ~+ = i): 

n = d - (? - l )~+ /?S+)  -* = ? / ( t  + (~ - l ) , v A s ) .  ( 2 . 1  

The quadratic equation mentioned, together with the equation of state, leads to the rela- 
tions 
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(2.3) 

The relations (2.2), when there are no disturbances and the upper sign is chosen, give 
a trivial result, while the relations with the lower sign give the Hugoniot-Rankine relation 
on a straight shock. When disturbances are present the reaction of the gas is different in 
the region of sub- and supersonic flows [9]; this is taken into account by introducing the 
function v into the solution. Denoting 

X = {xi} = {M-, hak, AQ, AQh, h z, Axh}, ( 2 . 4  

we f i n d  f rom t h e  r e l a t i o n s  ( 2 . 2 )  and ( 2 . 3 )  t h a t  t h e  g e n e r a l  s t r u c t u r e  o f  t h e  s o l u t i o n  f o r  
t h e  h y d r o d y n a m i c  p a r a m e t e r  ~ has  t h e  fo rm 

+ / ~ -  = f [ x ,  A s ,  % (X, As) ], 

where  t h e  unknown q u a n t i t y  ~ p  i s  a f u n c t i o n  o f  a l l  d i s t u r b a n c e s  e n u m e r a t e d  a b o v e .  

( 2 . 5  
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3. For problems studied here the analysis of the first and second laws of thermody- 
namics permits formulating a more general hypothesis, which enables closing the system of 
equations of hydrodynamics. The relations mentioned, under the assumptions employed above 
(see Sec. i) and representing the enthalpy in the energy equation (1.4) in the form 

\ % 1  

can be written as follows [Ii]: 

s + - -  s -  = t + A------~ ~2 % V ( 3.  I ) 

--  V.Q)/T]dV + ~ (sk/s-- -  t )  AG:, + (v.(p.v) 
/ h = l  

C~p --- P-~/Po := [(1 q- (7 - -  1) �9  ( M - )  AHiexp ( ( s -  - -  s+),/cp)/(t q- AG)] ~)(~-~), ( 3 . 2 )  

w h e r e  x(M) = (1 + (~ - 1 ) M ~ / 2 ) - t ;  s i s  t h e  e n t r o p y ;  D i s  t h e  d i s s i p a t i v e  f u n c t i o n ;  x i s  t h e  
thermal conductivity; P is the turbulent-stress tensor; P0 is the stagnation pressure; and, 
the "initial" states of the medium, determined by the parameters PH and PH, in the sections 
S- and S + are assumed to be identical. According to (3.1) and (3.2) the stagnation pressure 
in the zone of restructuring of the flow can vary owing to the following: inflow of heat 
and mass (with one or the other sign); dissipative processes owing to the viscosity of the 
medium (the first two terms in the volume integral in (3.1)); and, nonuniformities of the 
fields of the turbulent stresses and heat flux. All reasons enumerated above for the change 
in the mechanical energy of the flow, characterized by the coefficient of restoration of the 
pressure Op, were previously represented as dimensionless parameters - the actions. Thus 
the first and second laws of thermodynamics, using the notations (2.4), lead to the conclu- 
sion that there exists a thermodynamic function 

~ T  = h (X), ( 3 . 3 )  

which is what served as a basis for formulation of the hypothesis stated above. In the 
general case the function it(X) is unknown, and does not give any quantitative information. 

On the other hand, the relation (2.2), which follow from the three conservation laws of 
hydrodynamics, also permit constructing the ratio p+/p~ as a known function of the actions 

and the weighting coefficient of the average pressure ~p: 

( t F/('-" --i(n+t----~(K-TvnN) t 2 g~--n"N} (3.4) 

(~(M) = O:(M))V/(v-1)), w h e n c e  

o~ ) =/2(x ,  As, ~p(X~As)). (3.5) 

The dependence of o~ 2) on the arguments listed in (2.5) is not single-valued, as are the 

relations (2.2) or (2.5), from which it is obtained owing to the uncertainty of the function 

%(X, As)-, 
In the relations (3.3) and (3.5) the actions X(2.4) and DS can be regarded as indepen- 

dent variables. But unlike other actions, the actions A~ and Ark can be represented as func- 
tions of other actions and some variable parameters h i (for example, A~(A s, A o, Aqh, Ash, M-, 
~i)). This is explained, on the one hand, by the fact that any actions that alter the startl 
ing state of the flow are accompanied by dissipative effects and change 5~. Moreover, even 
when the actions As, AQ ..... M- are fixed, the value of 5~ can vary over a wide range owing to 
h i (different shape Of the steps in the channel, the presence of chambers, nets across the 
channel, different degree of roughness of the side walls or starting intensity of the tur- 
bulence, etc.); this is what justifies the starting assumption. Analogous arguments also 
hold for A~k, and with some modifications for AQ, A01 ~ also. 

In the expressions (3~2) and (3.4) one and the same thermodynamic function is defined; 
�9 . i and P this enables wrltlng for o~ ) 0(2) the condition 

~) O~ ) . (I) ~ (2) (3.6) 
= or aop --aOp = O, 
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which, together with the relations (2.4), (3.3), and (3.5), gives 

=0. 

Because the variables x i and A S are independent, from here follow 

af~ ( ~ _  o f 2 o % ~ = 0  ' of,~ 4 o?~aqop 0. 
ax i ocppaz2] -a~- s " a~poA---ss (3 .7 )  

The r e l a t i o n s  (3 .7 )  ensure t h a t  the c o n d i t i o n s  (3 .6 )  are s a t i s f i e d ,  and the l a t t e r  c o n d i t i o n  

Ok s ok s \o~pp] 

ensures that the function Op (2) is independent of the geometric action h S as an independent 
variable. Such a dependence can occur only implicitly through the actions A~, A~k, and 
AQ, AQk and is taken into account in (3.4). Equation (3.8) together with (2.2) describes the 
reaction of the gas in the channel to local finite actions A s , A~, AQ, Aqk, A~, A~, forming 
in the process a closed system. 

4. We shall study the behavior of the gas under local disturbances first for the ex- 
ample of an incompressible liquid (M-<< i, M+<< l). Expanding the functions contained in 
(2.2) and (3.4) in a series in powers of the Mach number and retaining the terms no higher 
than quadratic in M (AT ~ K- (n .-6 I)M-~(I- As)Cl), we obtain 

v+/u - = ( t - -As) ( l  + Ac), p~/p-  = t @ (c~A s -6 25)/2Eu-,  p+/p- = t ,  

p + / p -  = t + (C~hs (2 - -  As) + 26)/2Eu-,  T + / T  - = 1, 5 = a -  - -  c~ - -  A*, 

c~ = (t -6 ha) 2, E u -  - (p/pv2) - ,  A* = h ~ -  ~ A~hA~ (n~/eS~ 
h = l  

w h e r e  S o = S h / S -  and A~h = --ahnhr w i t h  mass i n f l o w  ( s e e  S e c .  1 ) ;  

~) _ 2Eu- i K H- nN -6 N) (4. i) 
t @ 2 E u -  I ( n - ~ l )  2 ?--I ~-- " 

The c o n d i t i o n  ( 3 . 8 ) ,  in  a p p l i c a t i o n  to  ( 4 . 1 ) ,  leads to a d i f f e r e n t i a l  equat ion  w i t h  the 
parameters A~h, A~, A~h: 

As(I -- As)(6 -6 Asq) (d%JdAs)  = (t -- %)(~ - 6 A s C ~ ) -  

-- q~phs(l -- As)(t -- qogAs)q, 

whose solution has the form 

~ = ( q A }  - 26 (~ - ~s )  + 2 / ) / ( q A ~  (2 - ix=) + 2/x=/). 

The function of the parameters f can be determined using one of the relations (2.1) or (2.3) 
for n or I, related with ~p, whose values at the point h S = 0 are known: 
n = 7 and I = i. Either one gives f = 6, and leads to the final expressions for the functions 
~p and Op and the hydrodynamic parameters: 

clh s@ 26 c 1 @ 2Eu- ~ 26 
~9 = C AS(2-- AS)+25'  ~9 = t + 2Eu-- ( 4 . 2 )  

v + / o - = ( I - - A s ) ( I + A o ) ,  p a / p -  = I + ( C l A s + 2 6 ) / 2 E u - ,  

p + ~ -  = I + @1As(2 - -  As) -6 25)/2Eu-.  

Applying (4.2) for describing the flow of an ideal incompressible liquid in a channel 
with impermeable walls (c I = I, ~ = 0) gives 

m. = 1/(2 - As), ~p = t. (4.3) 

The last of the relations (4.2) is a combination of the Bernoulli integral with the equation 
of continuity. 

To describe the flow of a real liquid in a channel based on the relations (4.2) it is 
necessary to determine additionally A~ and A~k (with the exception of mass inflow, when 
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A~h = -- a~n~r). In many cases the experimental hydraulics data on the coefficients of the hy- 
draulic losses ~ can be employed for this; the relation between these coefficients and the 
coefficient of restoration of the pressure ~ = (i @ 2Eu-)(l -- op) gives 

= i - -  cx - -  25 = 2 (1 - -  a - )  § A~(2 + Ae) + 2A*. 

Here the hydraulic losses are referred to the velocity v-. As an illustration we shall ex- 
amine the well-known problem of Borda about the flow of liquid in a channel with a sudden 
expansion of the cross section (A s > 0, Aoh ---- 0, A, ~ 0), for wh• experimental data on the 
hydraulic losses are satisfactorily described by the expression ~ = A~ [12] and, together 
with (4.2), lead to the relations 

AT = A~/2, % = t/2, v+/v - = t - -  As, 
(4.4) 

p* /p -  = i @ As(l - -  As) /gu- ,  p,, /p- = t -~ As(l - -  As)/2Eu-.  

The r e s u l t  o b t a i n e d  h e r e  w i t h  r e g a r d  t o  ~ = t /2  (p~ ---- (p+ ~- p-) /2)  d o e s  n o t  a g r e e  w i t h  t h e  h y -  
p o t h e s i s  Pa = P-(~0p----0) w i d e l y  e m p l o y e d  i n  h y d r a u l i c s  [13 ]  and  m u s t  be c h e c k e d  e x p e r i m e n -  
t a l l y  ( s e e  S e c .  6 ) .  

F o r  f l o w s  i n  c h a n n e l s  w i t h o u t  f l o w  d i s t u r b a n c e s ,  c h a r a c t e r i s t i c a l l y  P ,  ~ [P-, P*] and 
0 ~  ~ ~ t ( 4 . 3 ) ,  ( 4 . 4 ) ,  w h e r e a s  i n  p r o b l e m s  w i t h  f l o w  d i s t u r b a n c e s  t h e  v a l u e s  o f  Po and  
~n f a l l  o u t s i d e  t h e s e  i n t e r v a l s .  I n  p a r t i c u l a r ,  when d i f f e r e n t  a c t i o n s  c o m p e n s a t e  one  a n o -  
t h e r  and  p+ = p - ,  t h e  f u n c t i o n  r  h a s  a d i s c o n t i n u i t y  o f  s e c o n d  o r d e r ,  
i n  t h e  v i c i n i t y  o f  w h i c h  t h e  r e l a t i o n  b e t w e e n  t h e  p r e s s u r e s  Po ,  P - ,  and p+ c h a n g e s .  The 
c o m b i n a t i o n  o f  a c t i o n s  f o r  w h i c h  t h e s e  e f f e c t s  o c c u r  c an  be f o u n d  f r o m  t h e  c o n d i t i o n  
cIAs(2 -- As) + 28 : 0, following from (4.2) with p+ = p-. 

5. For a compressible liquid Eq. (3.8) can be solved only numerically. But the value 
of ~p at the point A S = 0 is unknown, which makes it difficult to formulate the Cauchy prob- 
lem ~or this function. Under these conditions it is convenient to reformulate (3.8) for n, 
related with ~p by the relation (2.1) and assuming the value n = 7 at the point A S = 0. As 

a result 
a(dn/dAs) = --b,  A s = 0, n = %,, 

a = [(n - -  7)(K ~ vnN)  • v(n ~ - -  I ) N ]  [(? - -  t ) ( i  - -  As)  (K ~ vnN) - -  

- (n ~ - i ) ] ,  ( 5 . 1 )  

b = n (n 2 - -  t )  1 -- A s {_____V(y - -  1)~"(1 - -  As) N ( K  ~ vnN)  - -  

- -  ( n  - -  i )  [ (n  - -  "~) ( g  T v n N )  4-  v (n 2 - -  t )  N ] } .  

The nonlinear differential equation (5.1 has at the point A S = 0 a singularity of the type 
(dn/dAs)As=o=O/O. To eliminate this singularity the coefficients a and b in (5.1) must be 
expanded in series in powers of the small quantities 6h S and 6n about the point A S = o, n = 
7, and for transsonic flows additionally in powers of 6M- = i -M-. Retaining the linear 
terms in the expansion we arrive at a number of particular cases: 

~ - - ~ ( ~ - - i ) :  I A s l ~ < ~ ,  ~I~=/=0, 
dn I 
e~s -~(~ ~)/2:l~sl~<~, ~=o, IM- I[>~M, (5.2) 

~ - -  2%, (%, - -  t)/3: 0~.<As~<e~, T = 0 ,  I M - - -  l l<~e.~,  

w h e r e  W = Ko ~ v ? N o - -  (? - -  t ) ; K  o =  I + y M  - ~ ( t - A ~ ) ; N o =  [K~ - - 2 ( ? + i )  M - 2 ( c  o + ( ~ - ) ~ ( ? - t ) M •  
2) ]i12; the function �9 differs from zero, if the ratio of the pressures p+/p- at the point 
A, S = 0 differs from unity owing to some actions, otherwise �9 = 0; e A and gM are small in the 
vicinity of the singular points. 

Integration of (5.2) in the neighborhood of A S = 0 and (5.1) outside this neighborhood 

and using (2.1) give 

~ p  = { i / ( l  - -  (? - -  i ) A s ) ,  i / ( 2  - - ( 7  - -  1 )As ) ,  2 / (3  - -  2 (?  - -  i ) A s ) ,  

(~ - -  n) / (~  - -  l ) n A s } .  
(5.3) 
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Here the first three values correspond to (5.2) and the last value corresponds to Eq. (5.1), 
in which the initial conditions are connected taking into account the solution for n in the 
neighborhood of A S = 0. For the function n, like for ~v, different singular points of second 
order can appear. This is obvious from the relation (2~i), where the vanishing of the de- 
nominator gives finite values for the function ~p for A' S ~ 0. From here follows a method 
for overcoming the singular points in the numerical solution, consistig of transferring from 
integration of the equation for n to the equation for ~p with the help of (2.1). 

The results of the calculation of ~p for adiabatic flows of an ideal compressible liquid 
(A~ = A~ = Ac~ ~ AQ = AQh = 0) in channels with steps are presented in Fig. 2, where the 
curve with M- = 0 corresponds to the formula (4.3). As expected the values of ~p under these 
conditions give ratios of the hydrodynamic parameters that correspond to isentropic flow of 
a gas at a jump in the cross-sectional are:~P/P- = ~(M+)/~(M-), etc. The equivalence of isen- 
tropic flows in channels with a step and with a continuous change in the cross-sectional area 
was employed in [14] by replacing the equation of motion (1.4) with the unknown pressure on 
the step by a Poisson adiabat. The curves I and II for A G = 0.3 and 0.6 correspond to the 
formula (4.2), while the curve III corresponds to the formula (4.4); in addition, A z = 0 and 
mass is supplied along the normal to the axis of the channel; the broken line corresponds to 
Borda's hypothesis ~p = 0. 

6. To check experimentally some of the results obtained above we shall confine our at- 
tention to subsonic and incompressible flows of gas in a channel with a sudden expansion. 
To describe such flows adequately the dissipative effects in the mixing zones must be taken 
into account [i]. The latter can be described in both cases with adequate accuracy on the 
basis of the model of an incompressible liquid [15], where At = A~/2 (4.4). The computed 
(5.1) and (2.2) values of the pressures in the wide part of the channel are compared with the 
experimental values [16] for subsonic air flows in the channel with A S = 0.498 in Fig. 3 
(the broken line and the dots, respectively), where the numbers on the curve indicate the 
relative error in the experimental and computed data while the solid curve corresponds to 
the model of an ideal liquid. For an incompressible liquid the result ~p = 1/2 in (4.4) was 
checked experimentally. Theexperimental setup practically reproduced the conditions of the 
experiment of [16]: the pressure distribution was determined by draining the surface of the 
step and the wide part of the channel. In this case As =0.77, M-~0A,~=I.4; the recording 
and measuring apparatus gave a measurement error of not greater than 0.i Pa. The experimental 
value ~p = (p~--p-)/(p+ --p-) = 0.470(I_~_~ 0.049)(the line IV in Fig. 2) with a confidence prob- 
ability greater than 0.95, and confirm with a satisfactory error the value %~ = I/2 (p~ = 

(p" + p-)J2). 
7. As an illustration of the new possibilities of the solutions (2.2) and (5.1) we 

shall study the problem of adiabatic efflux of a subsonic flow of ideal liquid from a channel 
through side branches which are orthogonal to the side surface of the channel. In each side 
branch the flow is detached from the wails and a pressure equal to the pressure in the surro- 
unding medium Pa is established in some minimum section of the stream tube S m and on the 
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free surface of the jet. The equations of hydrodynamics (1.2) and (2.2) for Po are supple- 
mented by the conservation laws for the liquid between the sections S k and S m (diagram in 
Fig. 4) and lead to the relations 

( e P v 2 ) ~ + P ~  = P ~ , P c ~ -  = t + ~ p [ ( K  + nN) / I (n  + t) - -  I I ,  
T V / ( ? - I )  T 1 / ( V - I )  T = 

(em = Sm/Sk is the coefficient of narrowing of the jet in the side branch). 
tion of h G in (1.3) and em we obtain the following relation 

( 7 . 1 )  

From t h e  d e f i n i -  

( S ~ =  S k / S - ) .  The p r o b l e m  o f  f i n d i n g  t h e  f l o w  r a t e s  h~ G o r  t h e  c o e f f i c i e n t s  ~m, f o r m u l a t e d  
above  b a s e d  on t h e  l aws  o f  c o n s e r v a t i o n  o f  h y d r o d y n a m i c s ,  l e a d s  t o  an i n f i n i t e  s y s t e m  o f  
e q u a t i o n s  owing t o  t h e  u n c e r t a i n  f u n c t i o n  ~ ( 5  s, A~k). Us ing  t h e  a d d i t i o n a l  e q u a t i o n s  
( 5 . 1 ) - ( 5 . 3 )  c l o s e s  t h e  s y s t e m  ( 7 . 1 )  and ( 7 . 2 ) .  

For  t h e  p a r t i c u l a r  c a s e  A S = 0 ( c h a n n e l  w i t h  a c o n s t a n t  c r o s s  s e c t i o n ) ,  when n =  T, I ~  i ,  
%, = i ,  po = p + ,  t h e  p r o b l e m  r e d u c e s  t o  t h e  s o l u t i o n  o f  a s y s t e m  o f  n o n l i n e a r  e q u a t i o n s  
l e a d i n g  t o  a q u a d r a t i c  e q u a t i o n  f o r  h' G or  ~m" I t s  s o l u t i o n  g i v e s  

Ao = mAak = mS~ ( A / B  - -  ],/(A/B) 2 + C/B),  

A = ? (T + t ) {M-M~ (T,~/~-) '/~ [{7 4- 1)n~, /n-  - -  K 0] - -  2~mS~ 

B = 72 (7 4- t )M -~ {(7 4- i ) M = ' ~ / ~ - +  2 ( m S ~  2 (T--)--~}, 

C = 72K0 - -  [(7 4- t) groin- - -  K0] 2 - -  272 (7 + i) M -2 (~- ) -~ ,  K0---- t~-TM --~ 

( 7 . 3 )  

Figure 4 shows the results of the calculation of the coefficient of narrowin$ of the 
jet em with a critical efflux of gas (M m - I, 7 = 1.25) through a side opening mS~ for dif- 
ferent starting values of M- (numbers on the solid lines). For efflux through small side 
openings (mS~<<1) the coefficients e m and the flow rate ]AGI (7.2) decrease as the starting 
velocity (M-) increases. However, as the size of the openings increases IAa] and Sm increase, 
and to an especially large degree for the gas with large values of M-. The latter behavior 
is explained by the increase in the difference po - Pm (7.1) owing to the increase in Po when 
mass is removed from the subsonic flow. The coeffficient em reaches a maximum value when the 
entire flow is diverted through the side openings and A~ =--1, v+/v - = 0 and max(p+/p -) (in 
Fig. 4 the broken lines are the graphs of p+/p-). When the side openings are further in- 
creased in size a reverse flow appears in the section S + (v + < 0) and Po drops, which reduces 
em, and in addition E m § 0 as mS~+~. The region of application of the solution (7.3) is 
bounded by the conditions M- < i, M +< i. 

Thus for problems of the hydrodynamics of internal flows with local actions on the flow 
the hypothesis formulated here about the thermodynamic function o D is more universal than 
previous hypotheses. The consequence of this hypothesis - the additional equation (3.8) - 
expanded the region of application of the equations of hydrodynamics in integral form for de- 
termining the integral characteristics of the flow. 
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